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Chapter 11

Respiratory Systems



Exchanging Materials

▪ Every organism must 

exchange materials 

with its environment.
• This exchange 

ultimately occurs at 

the cellular level.



Exchanging Materials

▪ In unicellular organisms, these exchanges occur 

directly with the environment.

▪ For most of the cells making up multicellular 

organisms, direct exchange with the environment 

is not possible.



Circulatory Systems Reflect 

Phylogeny
▪ Transport systems functionally connect the 

organs of exchange with the body cells.









Sea level

PO2 =760*0.2094 = 159 mmHg

PO2 =(760-18)*0.2094 = 155 mmHg

















11.1 Gas Demands: General Problems and

Evolutionary Solutions

▪ Four steps in external respiration

• Ventilation
• Bulk transport of external media across a gas 

exchange surface

• Respiratory exchange
• Gas diffusion between the environmental medium 

and internal body fluids

• Circulation
• Bulk transport of the ECF

• Cellular exchange
• Gas diffusion between the cell’s immediate 

surroundings and its mitochondria
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11.1 Gas Demands: General Problems and

Evolutionary Solutions

▪ Gas diffusion follows Fick’s law

• For gases, concentration gradient is replaced 
by partial pressure gradient

• The partial pressure of a gas (Pgas) is the 
pressure exerted independently by the gas within 
a mixture of gases
• Example: Po2 in dry atmospheric air (21% O2) is                      

0.21 x 760 mmHg = 160 mmHg

• Water that is in equilibrium with air has the 
same gas partial pressures as the air
• Concentrations may be different, depending on 

the solubility of the gas



11.1 Gas Demands: General Problems and

Evolutionary Solutions
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Figure 11-2a p495



Partial pressure of N2
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Figure 11-2b p495
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11.1 Gas Demands: General Problems and

Evolutionary Solutions

▪ Diversity of gas exchange structures

• Plasma membrane of unicellular organisms

• Skin of small multicellular organisms
• Some have cilia to create feeding and breathing 

currents

• Evaginated surfaces (gills) of large aquatic 

animals

• Invaginated surfaces (tracheae or lungs) of 

terrestrial animals



11.1 Gas Demands: General Problems and

Evolutionary Solutions



Figure 11-3a p496



Figure 11-3b p496



Figure 11-3d p496



Figure 11-3e p496



Figure 11-3f p496



11.1 Gas Demands: General Problems and

Evolutionary Solutions

▪ Breathing can be tidal or flow-through

• Tidal breathing

• External medium is moved in and out of the same 
opening through inhalation and exhalation

• Fresh medium is only brought in half the time and is 
mixed with depleted medium

• Flow-through breathing

• External medium enters one opening and leaves 
through a separate opening

• Flow of fresh medium can be continuous and very little 
mixing occurs

• More efficient gas exchange than tidal breathing



11.2 Water Respirers

▪ Water is a more difficult medium than air for 
gas exchange

• Higher viscosity than air
• O2 is less soluble in water
• Rate of diffusion of gases is slower
• Solubility of O2 decreases with increasing 

salinity
• Solubility of O2 decreases with increasing 

temperature
• O2 content in water is more variable due to 

habitat variation
• Environmental water contains many more 

components than air



11.2 Water Respirers

▪ Integumentary respiration

• Flatworms and Cnidaria

• Enhanced by internal circulation
(e.g. earthworm)

• Important in amphibians, aquatic reptiles
and most fishes
• During hibernation, frogs and turtles exchange 

all of their respiratory gases across the skin
• Eels exchange 60% of gases through highly 

vascular skin



11.2 Water Respirers

▪ Gills

• Evaginations of tissue protruding into the 
external medium

• Delicate structures composed of thin cell 
layers
• Protected by shells, toxins, withdrawal, 

exoskeletons, bony plates

• Highly perfused by a circulatory system

• May have flow-through breathing 
mechanisms
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11.2 Water Respirers

▪ Muscle-driven breathing

• Cephalopods

• During inhalation, the funnel closes and 
mantle cavity expands, drawing water in

• During exhalation, the mantle opening seals 
up, the mantle contracts, and the funnel 
opens, expelling water out the siphon

• Also used for jet propulsion



11.2 Water Respirers



11.2 Water Respirers

▪ Muscle-driven breathing in fishes

• Skeletal muscle pumps in buccal and opercular 
cavities

• Mouth opens and O2-rich water is drawn into the 
mouth by negative pressure

• Then the mouth closes, the opercular cavity 
constricts and opercula open, forcing water 
through the gills and out the opercular exit

• Lamprey uses tidal flow in and out of the 
opercular opening, because its mouth remains 
attached to the host while feeding



11.2 Water Respirers
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11.2 Water Respirers

▪ Muscle-driven breathing in fishes

• In ram ventilation, bulk transport is created 
by the animal’s swimming motion

• Obligate ram breathers (e.g. tuna and sharks) 
must swim in order to breathe

• Facultative ram breathers (e.g. rainbow trout) 
switch from buccal-opercular breathing to ram 
ventilation when swimming above certain 
velocities



11.2 Water Respirers

▪ Muscle-driven breathing in fishes

• Countercurrent blood flow enhances gas 

pressure gradients

• Blood flows in a direction opposite to that of 

water flow

• Blood continually encounters water whose     

O2 content is higher

• Provides much greater efficiency of gas 

exchange



11.3 Air Respirers: Overview and Nonvertebrates

▪ Air respirers vs. water respirers

• Air is much less viscous than water, allowing 
easier bulk transport

• Air contains more O2 than water
• Reduced need for surface area
• Permits less efficient tidal breathing

• Thin respiratory surfaces exposed to air 
must be kept moist
• Remain in a moist environment or
• Have covered or fully internal gas exchange 

structures



11.3 Air Respirers: Overview and Nonvertebrates

▪ Arthropods

• Scorpions and some spiders have book 

lungs
• Stacks of lamellae invaginating from the cuticle 

into the abdomen



11.3 Air Respirers: Overview and Nonvertebrates

▪ Arthropods

• Insects and many spiders have tracheae.

• Tubular extensions into the tissues reinforced with 
rings of chitin

• Break up into finer branches (tracheoles)

• Tracheae connect to outside through openings in 
the exoskeleton (spiracles)

• Distribution of tracheae reflects the O2 demands 
of tissues

• Larger and flying insects have active tidal pumping 
of air



11.3 Air Respirers: Overview and Nonvertebrates



11.4 Air Respirers: Vertebrates

▪ Bimodal breathers

• The first air breathers evolved in tropical 
lowlands where stagnant ponds were subject 
to hypoxia or desiccation.

• Bimodal breathers have gills and other 
respiratory exchange structures (e.g. skin)

• Lungs in fishes were simple ventral 
evaginations of the pharynx



11.4 Air Respirers: Vertebrates

▪ Amphibians

• Bimodal or trimodal breathers (gills, lungs, 
integument) to support aquatic and terrestrial 
lifestyles

• In frogs, larval stages have gills; adults have 
simple, noncompartmentalized lungs

• Air is forced into lungs by positive pressure from a 
buccal pump

• Several inspiratory oscillations fill lungs; empty in one 
long exhalation

• Adaptation to air-breathing included a decrease in 
affinity of hemoglobin to O2



11.4 Air Respirers: Vertebrates



11.4 Air Respirers: Vertebrates

▪ Reptiles

• Lungs in reptiles, birds and mammals are 
compartmentalized and fill by negative 
pressure

• Reptile lungs are expandable, tidally 
ventilated sacs

• Vascularized ingrowths or dividing walls 
(septa) subdivide pulmonary lumen
• Air sacs are called ediculae (spherical) or 

faveoli (oblong)



11.4 Air Respirers: Vertebrates

▪ Reptiles

• Lizards and snakes rely on costal (rib) 
muscles for expansion of lungs

• Turtles (with fixed ribs) use limb extension

• Crocodilians have a connective tissue 
diaphragm adhering tightly to the anterior 
surface of the liver
• Diaphragmaticus muscle contracts during 

inhalation
• Flow-through system in secondary and tertiary 

bronchi



11.4 Air Respirers: Vertebrates
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11.4 Air Respirers: Vertebrates

▪ Birds and mammals

• Surface area of lungs for gas exchange is 
expanded to support increased metabolic 
rates
• Very small alveoli in mammals
• Parabronchi with air capillaries in birds

• Oxygenated blood from lung is completely 
separated from systemic venous blood by 
four-chambered heart

• Small percentage of skin breathing in most 
mammals



11.4 Air Respirers: Vertebrates

▪ Mammalian airways

• Nasal passages
• Maxilloturbinals retain heat and water

• Pharynx is a common passageway for air and food

• Trachea and esophagus exit pharynx
• Reflexes close off trachea during swallowing

• Bronchi
• Trachea divides into right and left bronchi, each entering a lung
• Bronchi branch within lungs
• Trachea and large bronchi are supported by cartilaginous rings

• Bronchioles -- smaller branches
• Walls contain smooth muscle innervated by the autonomic 

nervous system
• Terminal bronchioles open into alveoli



11.4 Air Respirers: Vertebrates
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11.4 Air Respirers: Vertebrates

▪ Alveoli

• Very small, tidally ventilated sacs

• Gas exchange
• Large surface area
• Single layer of highly flattened Type I alveolar cells
• Dense network of capillaries surrounding alveoli
• Thin interstitial space
• Achieve partial pressures of gases in blood comparable to 

those in inspired air

• Type II alveolar cells secrete pulmonary surfactant
• Facilitates alveolar expansion

• Pores of Kohn permit airflow between adjacent 
alveoli (collateral ventilation)
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11.4 Air Respirers: Vertebrates

▪ Respiratory cycle

• Inspiration involves contraction of inspiratory 

muscles
• Diaphragm contracts downward

• External intercostal muscles expand ribs outward, 

enlarging the thoracic cavity

• Exhalation normally involves relaxation of 

inspiratory muscles and elastic recoil of chest wall 

and lungs

• Active exhalation involves contraction of abdominal 

wall muscles and internal intercostal muscles



11.4 Air Respirers: Vertebrates
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Figure 11-14cd p512
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11.4 Air Respirers: Vertebrates

▪ Birds

• Complete separation of ventilation and gas exchange

• Lungs are smaller than in mammals and inelastic

• Ventilation of expandable air sacs perform tidal 
function without gas exchange

• Air enters nasal passages, trachea, bronchi and air 
sacs

• Bronchi gives rise to secondary bronchi
• Air flows from dorsobronchi to ventrobronchi through 

parallel parabronchi

• Air capillaries branch from parabronchi



11.4 Air Respirers: Vertebrates
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Figure 11-15b p513
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11.4 Air Respirers: Vertebrates

▪ Air capillaries vs. alveoli

• Air capillaries are narrower than alveoli

• Epithelial cells are thinner

• Flow-through design

• Rigid -- resist damage

• Greater blood volume in pulmonary 
capillaries

• Crosscurrent blood flow in parabronchi 
provides more efficient uptake of O2



11.4 Air Respirers: Vertebrates



11.4 Air Respirers: Vertebrates

▪ Nonrespiratory functions of aerial 
respiratory systems

• Regulation of water loss and heat exchange
• Moistening of inspired air is essential to prevent 

desiccation of respiratory surfaces
• Improved venous return -- respiratory pump
• Acid-base balance
• Defense against inhaled foreign matter
• Removal, modification, activation or inactivation of 

substances passing through the pulmonary circulation
• Olfaction
• Vocalization

• Larynx in mammals
• Syrinx in birds -- the number of syringial muscles 

relates to complexity of song



11.4 Air Respirers: Vertebrates



11.5 Breathing: Respiratory Mechanics in

Mammals

▪ Air flows according to pressure gradients

• Atmospheric pressure (760 mmHg at sea 
level)
• Decreases with increasing altitude

• Intra-alveolar pressure -- seeks equilibrium 
with atmospheric pressure

• Intrapleural pressure
• Usually less than atmospheric pressure          
• (4 mmHg less on average)



11.5 Breathing: Respiratory Mechanics in

Mammals

▪ Influence of intrapleural pressure

• Pleural sac separates lungs from the thoracic wall
• Pleural cavity contains intrapleural fluid
• Polar water molecules in intrapleural fluid resist being 

pulled apart -- hold pleural surfaces together

• Lungs are stretched and follow movements of the 
chest wall because of transmural pressure gradient

• Intrapleural pressure and intra-alveolar pressure
decrease when the chest wall expands during 
inspiration and increase during expiration
• Boyle’s law -- At any constant temperature, the 

pressure exerted by a gas varies inversely with the 
volume of the gas



11.5 Breathing: Respiratory Mechanics in

Mammals



11.5 Breathing: Respiratory Mechanics in

Mammals



Figure 11-19a p518
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11.5 Breathing: Respiratory Mechanics in

Mammals

▪ Airway resistance is normally low

• Depends on radius of the conducting system

• Pressure gradients of 1 - 2 mmHg produce 
adequate rates of air flow

• Diseases causing narrowing of airways
greatly increase resistance and the work of 
breathing
• Chronic obstructive pulmonary diseases 

(COPD) -- chronic bronchitis, asthma, emphysema
• Equine restrictive lung diseases



11.5 Breathing: Respiratory Mechanics in

Mammals

▪ Elasticity of lungs depends on connective 
tissue and alveolar surface tension

• Pulmonary connective tissue contains large amounts 
of elastin -- rebound after being stretched

• Alveolar surface                                                  
tension is reduced by                                   
pulmonary surfactant

• Increases pulmonary                                       
compliance

• Reduces the lungs’
tendency to recoil

• Prevents collapse of smaller alveoli (predicted by 
LaPlace’s law:  P = 2T/r)



11.5 Breathing: Respiratory Mechanics in

Mammals
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11.6 Breathing: Lung Volumes in Mammals

▪ Measurement of lung volumes with a spirometer



11.6 Breathing: Lung Volumes in Mammals

▪ Lung volumes and capacities

• Total lung capacity (TLC) = Maximum amount of air that 
the lungs can hold (~5.7 L in humans)

• Tidal volume (TV) = Volume of air entering or leaving the 
lungs during a single breath (resting TV ~ 0.5 ml)

• Functional residual capacity (FRC) = Volume of air in 
the lungs at the end of a normal passive expiration      
(~2.2 L)

• Residual volume (RV) = Minimum volume of air remaining 
in the lungs after a maximal expiration (~1.2 L)

• Vital capacity (VC) = Maximum volume of air that can be 
moved out during a single breath following maximal 
inspiration (~4.5 L)



11.6 Breathing: Lung Volumes in Mammals



11.6 Breathing: Lung Volumes in Mammals

▪ Pulmonary ventilation (minute ventilation)

Pulmonary ventilation = tidal volume x respiratory rate

(L/min)                   (L/breath)       (breaths/min)

• Scales with body size

• Tidal volume increases with increasing body size (mb), 

while respiratory rate decreases with increasing body 

size:

TV = 0.0062mb
1.01 RR = 53.5mb

-0.26



11.6 Breathing: Lung Volumes in Mammals

▪ Please note some significant errors on 
page 523

3. Functional Reserve Capacity (FRC)

Pulmonary ventilation = tidal volume x respiratory rate
(L/min)                    (L/breath) (breaths/min)
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11.6 Breathing: Lung Volumes in Mammals

▪ Alveolar ventilation

• When increasing pulmonary ventilation (e.g. during 
activity), it is advantageous to have a greater 
increase in tidal volume than respiratory rate

• Not all inspired air reaches the alveoli for gas 
exchange

• Anatomic dead space = Volume of conducting 
passages (~0.15 L)

• Alveolar ventilation = Volume of air exchanged 
between the atmosphere and alveoli per minute

Alveolar ventilation = (TV – dead space) x RR



11.6 Breathing: Lung Volumes in Mammals
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Figure 11-26c p526
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11.7 Breathing: Flow-through versus Tidal

Respirers

▪ Comparative efficiency

• Flow-through systems (e.g. fishes) have much 
lower dead-space volumes than tidal systems

• Partial flow-through systems in birds have higher 
dead-space volumes
• Due to the larger size of the trachea
• To compensate, a bird has a higher TV and lower RR

than a mammal of comparable size

• Only 2% of total energy is expended on quiet 
breathing in mammals
• 25-fold increase in energy requirement for pulmonary 

ventilation during strenuous activity increases 
percentage to 5%

• ~20% of total energy is expended on respiration in fish



11.7 Breathing: Flow-through versus Tidal

Respirers

▪ Comparative efficiency

• The tidal lung of mammals can only achieve a 
blood Po2 equal to that of expired air
• 25% efficiency of O2 extraction from air

• In birds (partially tidal with dead spaces and 
crosscurrent blood flow), efficiency is 30 - 40%

• Countercurrent blood flow in fish, crustaceans
and amphibians yields 90% O2 extraction 
efficiency from water (however, O2 content is 
lower in water)



11.8 Gas Exchange at Vertebrate Respiratory

Organs and Body Tissues

▪ Lung air Po2 is lower than inspired 
atmospheric air

• Saturated with water (partial pressure of water 
vapor is 47 mmHg at body temperature)

• Inspired air is mixed with old air in dead space

• Average alveolar Po2 is 100 mmHg

• O2 diffuses into pulmonary capillary blood about 
as fast as it is inhaled

• Pco2 is higher in lung air than in inspired air
• Average alveolar Pco2 is 40 mmHg



11.8 Gas Exchange at Vertebrate Respiratory

Organs and Body Tissues
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11.8 Gas Exchange at Vertebrate Respiratory

Organs and Body Tissues

▪ Gas exchange in the lungs

• O2 diffuses from alveolar air into capillary blood, 
equilibrating at Po2 of 100 mmHg

• CO2 diffuses from capillary blood into alveolar air, 
equilibrating at Pco2 of 40 mmHg

• Increased perfusion of lung or gill capillaries 
improves gas exchange

• Increased thickness of gas exchange barriers slows 
diffusion and reduces gas exchange
• Low or high environmental pH causes mucification and 

inflammation of gill epithelium
• Pulmonary edema, pulmonary fibrosis and 

pneumonia interfere with gas exchange in air breathers



11.8 Gas Exchange at Vertebrate Respiratory

Organs and Body Tissues

▪ Gas exchange in the tissues

• Cellular Po2 is 40 mmHg and Pco2 is 46 mmHg

• O2 diffuses from systemic capillary blood into 
cells, equilibrating at 40 mmHg

• CO2 diffuses from cells into capillary blood, 
equilibrating at 46 mmHg

• Increased metabolic activity will lower capillary 
blood and tissue Po2 and raise blood and tissue Pco2



11.9 Circulatory Transport and Gas Exchange
▪ O2 is transported in blood bound to metal-

containing respiratory pigments

• Hemoglobin
• Annelids, mollusks, crustaceans, vertebrates
• Highly folded polypeptide chain (globin) and iron-containing 

heme group
• Red when oxygenated; blue when deoxygenated

• Hemocyanin
• Arthropods, annelids, mollusks
• Large proteins bound to copper ions
• Blue when oxygenated; colorless when deoxygenated

• Hemerythrin
• Brachiopods, sipunculids, one annelid
• Red iron pigment, not in heme complex
https://en.wikipedia.org/wiki/Hemerythrin

• Chlorocruorin and erythrocruorin
• Some annelids
• Large iron/heme proteins; green or red
• https://en.wikipedia.org/wiki/Chlorocruorin

https://en.wikipedia.org/wiki/Leghemoglobin

https://en.wikipedia.org/wiki/Hemerythrin
https://en.wikipedia.org/wiki/Chlorocruorin
https://en.wikipedia.org/wiki/Leghemoglobin


11.9 Circulatory Transport and Gas Exchange



11.9 Circulatory Transport and Gas Exchange

▪ O2 transport in vertebrates

• Amount of O2 dissolved is proportional to Po2 of 
blood (3 ml O2/liter of blood at Po2 of 100 mmHg)

• The majority of O2 is bound to hemoglobin
• Most vertebrate hemoglobin is tetrameric and capable 

of binding to four O2 molecules

HbH4
+ +  4 O2 <—>  Hb(O2)4 +  4 H+

deoxyhemoglobin               oxyhemoglobin

• Myoglobin is a monomer that stores O2 in muscle 
cells

• Neuroglobin (neurons) and cytoglobin (fibroblasts)



11.9 Circulatory Transport and Gas Exchange

▪ Please note another significant error on 

page 532

HbH4
+ +  4 O2 <—>  Hb(O2)4 +  4 H+

deoxyhemoglobin               oxyhemoglobin



11.9 Circulatory Transport and Gas Exchange

▪ Hemoglobin saturation

• Binding of O2 to hemoglobin is reversible and 
subject to the law of mass action

• The most important factor determining                
% hemoglobin saturation is Po2

• Hemoglobin binds O2 in the lungs and unloads 
O2 in the tissues

• Affinity of hemoglobin for O2 (measured as P50) 
increases with body size and is higher in 
animals adapted to high altitude or low oxygen
environments
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11.9 Circulatory Transport and Gas Exchange

▪ Factors that decrease affinity of Hb for O2

promote greater unloading of O2 in the tissues

• Increased Pco2

• Increased acidity (Bohr effect)
• Acidity also lowers maximal O2-binding capacity

(Root effect)

• Increased temperature

• Organic phosphates
• 2,3-diphosphoglycerate (DPG) in most mammals
• Inositol pentaphosphate (IPP) in birds
• Nucleoside triphosphates in fishes



Figure 11-31a p538



Figure 11-31b p538



11.9 Circulatory Transport and Gas Exchange

▪ Carbon dioxide transport in blood

• Dissolved (5 - 10%)

• Bound to hemoglobin (25 - 30%)
• Forms carbaminohemoglobin (HbCO2)
• Binds with the globin

• Bicarbonate ion (HCO3
–) (60 - 70%)

CO2 + H2O <—> H2CO3 <—> H+ + HCO3
–

carbonic acid           bicarbonate ion

• Enzyme for the first step is carbonic anhydrase found in 
lungs, kidneys and gills

• Chloride ions enter red blood cells in exchange for efflux of 
bicarbonate ion (chloride shift)

• Deoxygenated hemoglobin picks up CO2 and H+ (Haldane 
effect)



Figure 11-33 p541
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11.9 Circulatory Transport and Gas Exchange

▪ Abnormalities in arterial Po2

• Hypoxic hypoxia (e.g. high altitude)
• Anemic hypoxia (e.g. carbon monoxide poisoning)
• Circulatory hypoxia (e.g. congestive heart failure)
• Histotoxic hypoxia (e.g. cyanide poisoning)

▪ Abnormalities in arterial Pco2

• Hypercapnia = excess CO2 in arterial blood
• Caused by hypoventilation

• Hypocapnia = below normal arterial Pco2
• Caused by hyperventilation

• Changes in blood CO2 mainly affect acid-base 
balance



11.9 Circulatory Transport and Gas Exchange



11.10 Control of Respiration

▪ Control of respiration in insects
• Metathoracic ganglia control closer muscles which 

reduce opening of spiracles

▪ Extrinsic regulation of airways in mammals
• Parasympathetic stimulation promotes 

bronchoconstriction, increasing airway resistance
• Sympathetic stimulation promotes bronchodilation, 

decreasing airway resistance

▪ Intrinsic regulation of airways in mammals
• Ventilation rates match perfusion rates by adjustment of 

airway smooth muscle and arterioles
• Local increase in CO2 induces relaxation of airway 

smooth muscle
• Local decrease in O2 causes vasoconstriction of 

pulmonary arterioles
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11.10 Control of Respiration

▪ Medullary respiratory center

• Dorsal respiratory group (DRG) contains 
inspiratory neurons that terminate on motor  
neurons supplying inspiratory muscles

• Ventral respiratory group (VRG) contains 
inspiratory neurons and expiratory neurons
• Utilized only during active breathing when demands  

for ventilation increase

• Generation of a respiratory rhythm lies in the      
pre-Botzinger complex
• Neurons display pacemaker activity

• Pneumotaxic center and apneustic center in the 
pons fine tune the breathing pattern
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11.10 Control of Respiration

▪ Arterial blood gases are precisely regulated.

• The medullary respiratory center adjusts rate and 

depth of ventilation in response to inputs from central

and peripheral chemoreceptors.

• Arterial Po2 is monitored by peripheral 

chemoreceptors in carotid and aortic bodies
• In water-breathing vertebrates, Po2 is the primary 

homeostatic variable

• Increased arterial Pco2, detected by central 

chemoreceptors, is the most powerful stimulus to 

breathing in air-breathers
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11.10 Control of Respiration

▪ Role of H+ in respiratory control

• Central chemoreceptors are most sensitive to 
CO2-induced H+ production in the brain 
extracellular fluid

• Peripheral chemoreceptors are also highly 
responsive to arterial H+ concentration
• Major role in response to changes in H+ unrelated 

to Pco2 (e.g. lactate or keto acids)

• Important in regulating acid-base balance
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11.10 Control of Respiration

▪ Ventilation increases abruptly at the onset of 
exercise.

• Occurs without changes in arterial Po2 or 
Pco2

• Possible factors increasing ventilation during 
exercise

• Reflexes originating from body movements

• Anticipatory activation by epinephrine

• Anticipatory activation by the cerebral cortex



ABGs

▪ Base Excess
• Amt of blood buffer

• Normal +/- 2 mEq/L

• High value—alkalosis
• Citrate excess from 

rapid blood 

transfusions

• IV HCO3 infusion 

DKA\

• Ingestion large amt 

bicarb solutions 

(antacids)



ABGs

▪ Base excess
• Low value—acidosis

• Lg amts of bicarb ion 

excretion

• ie: diarrhea

•



ABGs

▪ Bicarbonate
• Major renal 

component

• Kidneys excrete & 

retain to maintain 

normal balance

• Principal buffer ECF

• Normal 22-26 mEq/L

• Metabolic acidosis < 

22 mEq/L

• Metabolic alkalosis > 

26 mEq/L



Acid-Base Imbalances 

▪ Either respiratory or 

metabolic, depend on 

their underlying cause

▪ Corrects AB 

imbalances through 

process known as 

compensation



Respiratory Acidosis

 pH < 7.35
 PaCO2 >45 mm Hg
 PaO2 < 80 mm Hg
 Bicarb level normal if 

uncompensated
 Bicarb level > 26 mEq/L 

if compensated

 Hypoventilation→CSF  
& brain cells become 
acidic→neurological 
changes→
hypoxemia→further 
neurological impairment

 Hyperkalemia & 
hypercalcemia  can 
occur

 Kidneys hold to bicarb & 
release hydrogen ions 
UA—may take 24 hrs



Respiratory Acidosis Causes

▪ Hypoventilation 

resulting primary 

respiratory problems
• Chest wall injury

• Respiratory failure

• Cystic fibrosis

• Pneumonia 

• Atelectasis 

(obstruction of small 

airways often caused 

by mucus)

▪ Hypoventilation 

resulting from factors 

other than resp 

system
• Obesity

• Head injury

• Drug overdose (OD) 

with resp depressant

• Paralysis of resp 

muscles caused by 

neurological 

alterations





Respiratory 

Acidosis

 S/S
 Convulsion

 Coma

 Muscular twitching

 Confusion

 Dizziness

 Lethargy 

 HA

 Warm flushed skin

 Ventricular dysrhythmia



Respiratory Alkalosis

▪ pH >7.45

▪ PaCO2 <35 mm Hg

▪ PaO2 normal

▪ HCO3 nl if short-lived 

or uncompensated

▪ HCO3 <22 mm Hg if 

compensated

▪ Begins outside resp 

system ie: anxiety, 

panic attack OR 

within resp system ie: 

initial phase of 

asthma attack

▪ Body does not usually 

compensate  because 

pH returns to nl 

before kidneys can 

respond



Respiratory Alkalosis

 Causes
 Salicylate overdoes

 Anxiety

 Hypermetabolic states 

ie: fever, exercise

 CNS disorders ie: head 

injury, infections

 Asthma

 Pneumonia

 Inappropriate vent 

settings

 S/S
 Confusion

 Dizziness

 Convulsions

 Coma

 Tachypnea

 Numbness/tingling of 

extremities

 dysrhythmias





Metabolic Acidosis

 High acid content of bld
 Loss of HCO3

 pH <7.35
 PaCO2 normal if 

uncompensated
 <35 mm Hg if 

compensated
 PaO2 normal or 

increased
 HCO3 < 22 mEq/L
 O2 Sat normal





Metabolic Alkalosis

▪ pH >7.45

▪ PaCO2 normal if 

uncompensated

▪ PaCO2 >45 mm Hg if 

compensated (occurs 

by decreasing RR & 

no renal disease)

▪ PaO2 normal

▪ HCO3 > 26 mEq/L

▪ Causes
• Excessive vomiting

• Prolong gastric sx

• Excess aldosterone

• Hypokalemia

• Hypercalcemia

• Use of drugs ie: 

steriods, diuretics, 

sodium bicarb





Question

▪ Interpret the following ABGs:
• pH ?

• PCO2 ? mm Hg

• PO2 ? mm Hg

• HCO3 ? mEq/L

• O2 Sat             ? %



Normal blood gas in an artery for humans:

pH 7.35–7.45

PaCO2 35–45 mmHg

PaO2 80–100 mmHg

HCO3−  22–26 mmol/L

https://www.rccc.eu/ppc/calculadoras/ABG

%20interpreter%20-%20calculator.htm

https://www.rccc.eu/ppc/calculadoras/ABG interpreter - calculator.htm

